Inductive reasoningInductive reasoning is a method of reasoning in which a general principle is derived from a body of observations. It consists of making broad generalizations based on specific observations. Inductive reasoning is distinct from deductive reasoning, where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the conclusion of an inductive argument is probable, based upon the evidence given.
90377 SednaSedna (minor-planet designation 90377 Sedna) is a dwarf planet in the outermost reaches of the Solar System discovered in 2003. Spectroscopy has revealed that Sedna's surface composition is largely a mixture of water, methane, and nitrogen ices with tholins, similar to those of some other trans-Neptunian objects. Its surface is one of the reddest among Solar System objects. Sedna, within estimated uncertainties, is tied with as the largest planetoid not known to have a moon.
DALL-EDALL-E (stylized as DALL·E) and DALL-E 2 are s developed by OpenAI using deep learning methodologies to generate s from natural language descriptions, called "prompts". DALL-E was revealed by OpenAI in a blog post in January 2021, and uses a version of GPT-3 modified to generate images. In April 2022, OpenAI announced DALL-E 2, a successor designed to generate more realistic images at higher resolutions that "can combine concepts, attributes, and styles". OpenAI has not released source code for either model.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Object recognition (cognitive science)Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context. Neuropsychological evidence affirms that there are four specific stages identified in the process of object recognition.
ImageAn image is a visual representation of something. An image can be a two-dimensional (2D) representation, such as a drawing, painting, or photograph, or a three-dimensional (3D) object, such as a carving or sculpture. An image may be displayed through other media, including projection on a surface, activation of electronic signals, or digital displays. Two-dimensional images can be still or animated. Still images can usually be reproduced through mechanical means, such as photography, printmaking or photocopying.
Stable DiffusionStable Diffusion is a deep learning, released in 2022 based on diffusion techniques. It is primarily used to generate detailed images conditioned on text descriptions, though it can also be applied to other tasks such as inpainting, outpainting, and generating image-to-image translations guided by a text prompt. It was developed by researchers from the CompVis Group at Ludwig Maximilian University of Munich and Runway with a compute donation by Stability AI and training data from non-profit organizations.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
Inductive probabilityInductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world. There are three sources of knowledge: inference, communication, and deduction. Communication relays information found using other methods. Deduction establishes new facts based on existing facts. Inference establishes new facts from data. Its basis is Bayes' theorem.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.