Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become pro-tective against several pathologies, including cardiovascular diseases. Mas knockout mice (Mas-KO) represent an important tool for new investigations. Indeed, extensive biological research has focused on investigating the functional implications of Mas receptor deletion. However, although the Mas receptor was identified in neonatal cardiomyocytes and also in adult ventricular myocytes, only few reports have explored the Ang-(1-7)/Mas signaling directly in cardiomyocytes to date. This study investigated the implication of Mas receptor knockout to the cytokine profile, energy metabolism, and electrical prop-erties of mice-isolated cardiomyocytes. Here, we demonstrated that Mas-KO mice have modulation in some cytokines, such as G-CSF, IL-6, IL-10, and VEGF in the left ventricle. This model also presents increased mitochondrial number in cardiomyocytes and a reduction in the myocyte diameter. Finally, Mas-KO cardiomyocytes have altered action potential modulation after diazoxide challenge. Such elec-trical finding was different from the data showed for the TGR(A1-7)3292 (TGR) model, which over -expresses Ang-(1-7) in the plasma by 4.5, used by us as a control. Collectively, our findings exemplify the importance of understanding the ACE2/Ang-(1-7)/Mas pathway in cardiomyocytes and heart tissue. The Mas-KO mice model can be considered an important tool for new RAS investigations.(c) 2022 Elsevier Inc. All rights reserved.
Nicola Harris, Mario Michael Zaiss, Julia Esser-von Bieren, Luc Xavier Marie Lebon