Publication

Theoretical Efficiency and Dosimetry of Buffered On-body Transmitter Antennas for Wireless Powering of In-body Devices

Anja Skrivervik, Denys Nikolayev
2022
Conference paper
Abstract

The viable and safe application of wireless power transfer for powering bioelectronic implants requires understanding the wave propagation in heterogeneous and dispersive media, the electromagnetic exposure assessment, and the optimum design of the system parameters to achieve a trade-off between efficiency and specific absorption rate levels. Therefore, based on the case study of a wirelessly charged deep-implanted pacemaker, a parametric analysis on the transmitter dimensions and electromagnetic properties is carried out to achieve such a trade-off. The results show that the system reaches the maximum efficiency without increasing SAR levels when the transmitter is composed of an electric source, an air-like substrate, and a superstrate matched to the wave impedance in the skin with a thickness of half the wavelength in this medium. Furthermore, this configuration is compared to a magnetic counterpart, and the reasons for its suboptimal performance are investigated in terms of near-field, reflection, and attenuation losses.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.