AlgebraAlgebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Homotopy theoryIn mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and (specifically the study of ). In homotopy theory and algebraic topology, the word "space" denotes a topological space.
Ramification (mathematics)In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. Branch point In complex analysis, the basic model can be taken as the z → zn mapping in the complex plane, near z = 0.
Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Free Lie algebraIn mathematics, a free Lie algebra over a field K is a Lie algebra generated by a set X, without any imposed relations other than the defining relations of alternating K-bilinearity and the Jacobi identity. The definition of the free Lie algebra generated by a set X is as follows: Let X be a set and a morphism of sets (function) from X into a Lie algebra L. The Lie algebra L is called free on X if is the universal morphism; that is, if for any Lie algebra A with a morphism of sets , there is a unique Lie algebra morphism such that .
Associative algebraIn mathematics, an associative algebra A is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term [[algebra over a field|K-algebra]] to mean an associative algebra over the field K.
Stable homotopy theoryIn mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space , the homotopy groups stabilize for sufficiently large. In particular, the homotopy groups of spheres stabilize for . For example, In the two examples above all the maps between homotopy groups are applications of the suspension functor.
Alexander GrothendieckAlexander Grothendieck (ˈgroʊtəndiːk; ˌalɛˈksandɐ ˈɡʁoːtn̩ˌdiːk; ɡʁɔtɛndik; 28 March 1928 – 13 November 2014) was a French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.
Tor functorIn mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.