Edge detectionEdge detection includes a variety of mathematical methods that aim at identifying edges, curves in a at which the image brightness changes sharply or, more formally, has discontinuities. The same problem of finding discontinuities in one-dimensional signals is known as step detection and the problem of finding signal discontinuities over time is known as change detection. Edge detection is a fundamental tool in , machine vision and computer vision, particularly in the areas of feature detection and feature extraction.
Transformer (machine learning model)A transformer is a deep learning architecture that relies on the parallel multi-head attention mechanism. The modern transformer was proposed in the 2017 paper titled 'Attention Is All You Need' by Ashish Vaswani et al., Google Brain team. It is notable for requiring less training time than previous recurrent neural architectures, such as long short-term memory (LSTM), and its later variation has been prevalently adopted for training large language models on large (language) datasets, such as the Wikipedia corpus and Common Crawl, by virtue of the parallelized processing of input sequence.
Proportional representationProportional representation (PR) refers to a type of electoral system under which subgroups of an electorate are reflected proportionately in the elected body. The concept applies mainly to political divisions (political parties) among voters. The essence of such systems is that all votes cast - or almost all votes cast - contribute to the result and are effectively used to help elect someone - not just a bare plurality or (exclusively) the majority - and that the system produces mixed, balanced representation reflecting how votes are cast.
Speech recognitionSpeech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis.
Scale-invariant feature transformThe scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, , 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database.
Corner detectionCorner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
Generative pre-trained transformerGenerative pre-trained transformers (GPT) are a type of large language model (LLM) and a prominent framework for generative artificial intelligence. The first GPT was introduced in 2018 by OpenAI. GPT models are artificial neural networks that are based on the transformer architecture, pre-trained on large data sets of unlabelled text, and able to generate novel human-like content. As of 2023, most LLMs have these characteristics and are sometimes referred to broadly as GPTs.
Party-list proportional representationParty-list proportional representation (list-PR) is a subset of proportional representation electoral systems in which multiple candidates are elected (e.g., elections to parliament) through their position on an electoral list. They can also be used as part of mixed-member electoral systems. In these systems, parties make lists of candidates to be elected, and seats are distributed by elections authorities to each party in proportion to the number of votes the party receives.
Dual-member proportional representationDual-member proportional representation (DMP), also known as dual-member mixed proportional, is an electoral system designed to produce proportional election results across a region by electing two representatives in each of the region’s districts. The first seat in every district is awarded to the candidate who receives the most votes, similar to first-past-the-post voting (FPTP). The second seat is awarded to one of the remaining district candidates so that proportionality is achieved across the region, using a calculation that aims to award parties their seats in the districts where they had their strongest performances.
Image stitchingImage stitching or photo stitching is the process of combining multiple photographic s with overlapping fields of view to produce a segmented panorama or high-resolution image. Commonly performed through the use of computer software, most approaches to image stitching require nearly exact overlaps between images and identical exposures to produce seamless results, although some stitching algorithms actually benefit from differently exposed images by doing high-dynamic-range imaging in regions of overlap.