Soil biomantleThe soil biomantle can be described and defined in several ways. Most simply, the soil biomantle is the organic-rich bioturbated upper part of the soil, including the topsoil where most biota live, reproduce, die, and become assimilated. The biomantle is thus the upper zone of soil that is predominantly a product of organic activity and the area where bioturbation is a dominant process. Soil bioturbation consists predominantly of three subsets: faunalturbation (animal burrowings), floralturbation (root growth, tree-uprootings), and fungiturbation (mycelia growth).
Dryland salinityDryland salinity is a natural process for soil, just like other processes such as wind erosion. Salinity degrades land by an increase in soil salt concentration in the environment, watercourse or soil in unirrigated landscapes, being in excess of normal soil salt concentrations in dryland regions. Salinity refers to the movement and concentration of salt in the landscape and its associated detriment to land and water resources; dryland salinity refers to salinity in unirrigated landscapes.
Soil salinity controlSoil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also called soil improvement, rehabilitation, remediation, recuperation, or amelioration. The primary man-made cause of salinization is irrigation. River water or groundwater used in irrigation contains salts, which remain in the soil after the water has evaporated.
PlantPlants are eukaryotes, predominantly photosynthetic, that form the kingdom Plantae. Many are multicellular. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. All current definitions exclude the fungi and some of the algae. By one definition, plants form the clade Viridiplantae (Latin for "green plants") which consists of the green algae and the embryophytes or land plants. The latter include hornworts, liverworts, mosses, lycophytes, ferns, conifers and other gymnosperms, and flowering plants.
EdaphologyEdaphology (from Greek ἔδαφος, edaphos 'ground' + -λογία, -logia) is concerned with the influence of soils on living beings, particularly plants. It is one of two main divisions of soil science, the other being pedology. Edaphology includes the study of how soil influences humankind's use of land for plant growth as well as people's overall use of the land. General subfields within edaphology are agricultural soil science (known by the term agrology in some regions) and environmental soil science.
Species evennessSpecies evenness describes the commonness or rarity of a species; it requires knowing the abundance of each species relative to those of the other species within the community. Abundance values can be difficult to obtain. Area-based counts, distance methods, and mark–recapture studies are the three general categories of methods for estimating abundance. Species evenness is combined with species richness, (the number of species in the community), in order to determine species diversity, which is an important measure of community structure.
RainforestRainforests are forests characterized by a closed and continuous tree canopy, moisture-dependent vegetation, the presence of epiphytes and lianas and the absence of wildfire. Rainforests can be generally classified as tropical rainforests or temperate rainforests, but other types have been described. Estimates vary from 40% to 75% of all biotic species being indigenous to the rainforests. There may be many millions of species of plants, insects and microorganisms still undiscovered in tropical rainforests.
Natural abundanceIn physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from planet to planet, and even from place to place on the Earth, but remains relatively constant in time (on a short-term scale). As an example, uranium has three naturally occurring isotopes: 238U, 235U, and 234U.
Species diversitySpecies diversity is the number of different species that are represented in a given community (a dataset). The effective number of species refers to the number of equally abundant species needed to obtain the same mean proportional species abundance as that observed in the dataset of interest (where all species may not be equally abundant). Meanings of species diversity may include species richness, taxonomic or phylogenetic diversity, and/or species evenness. Species richness is a simple count of species.
Tropical rainforestTropical rainforests are rainforests that occur in areas of tropical rainforest climate in which there is no dry season – all months have an average precipitation of at least 60 mm – and may also be referred to as lowland equatorial evergreen rainforest. True rainforests are typically found between 10 degrees north and south of the equator (see map); they are a sub-set of the tropical forest biome that occurs roughly within the 28-degree latitudes (in the equatorial zone between the Tropic of Cancer and Tropic of Capricorn).