Pivotal Role of Intersite Hubbard Interactions in Fe-Doped alpha-MnO2
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
The electron self-interaction is a long-standing problem in density functional theory and is particularly critical in the description of polarons. Polarons are quasiparticles involving charge localization coupled with self-induced lattice distortions. Sinc ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...
3d transition-metal oxide materials with strong electron correlations and low dimensionality give rise to emerging exotic phases. Resonant inelastic X-ray scattering (RIXS) has developed as a powerful spectroscopic tool for probing the collective excitatio ...
The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently introduced approach based on density-fu ...
The magnetic, noncollinear parametrization of Dudarev's DFT + U method is generalized to fully relativistic ultrasoft pseudopotentials. We present the definition of the DFT + U total energy functional and the calculation of forces and stresses in the case ...
The electronic spectral function of BaNi2As2 is investigated using both angle-resolved photoemission spectroscopy (ARPES) and a combined computational scheme of local density approximation and dynamical mean-field theory (LDA + DMFT). In contrast to the we ...
Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can f ...
For decades transition-metal oxides have generated a huge interest due to the multitude of physical phenomena they exhibit. In this class of materials, the rare-earth nickelates, RNiO3, stand out for their rich phase diagram stemming from complex couplings ...