**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation

Abstract

We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares problem into a sequence of local nonlinear problems and variational linear problems. We develop dedicated solvers for the algebraic problems based on Newton's method and we solve the differential problems using mixed low-order finite elements. Various numerical experiments demonstrate the accuracy, efficiency and the robustness of the proposed method, compared for instance to augmented Lagrangian approaches.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (7)

Related publications (2)

Related MOOCs (4)

Least squares

The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each individual equation. The most important application is in data fitting.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Differential equation

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

In this work, two problems linked to glacier modeling are investigated. We propose an optimisation method for studying the flow of the ice and we present a numerical study about glacier thermal phenomena. In the first chapter of this thesis, we expose the models of these two problems. On one hand, we note that the boundary conditions on the bedrock are misunderstood, which explains it is difficult to obtain an accurate simulation of the motion of the ice. Also we establish a mathematical model where the bedrock boundary conditions depend on a control parameter. The aim of this study is to minimize a cost functional describing the difference between the computed velocity at the surface and the measure done. We study the cost functional with respect to the control parameter and we detail an optimisation method to solve the optimal control problem. On the other hand, we introduce two thermodynamical model governing the temperature and the water content field. The models correspond to a Stefan problem for the temperature and a convection-diffusion equation for the water content. The second chapter deals with the numerical resolution of the optimisation problem. First, a Finite Element Method (FEM) is described to solve the partial differential equations. Then, the algorithms used for the optimal control problem are detailed. Finally, this techniques are applied on two glaciers : Griesgletcher for 2D and Storglaciaren for 3D. The third chapter deals with the numerical resolution of the temperature and the water content models. A FEM is used for each problem. Concerning the temperature problem, the Stefan problem is numerically solved and the results allow to detect a free surface between the temperated ice and the cold ice. The water content field is also simulated. Numerical results are discussed on the Storglaciaren.

This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps, the prescribed Jacobian equation and inequality, the elliptic and parabolic Monge-Ampère equations.
For orthogonal map we develop an \emph{operator-splitting/finite element} approach for the numerical solution of the Dirichlet problem. This approach is built on the variational principle, the introduction of an associated flow problem, and a time-stepping splitting algorithm. Moreover, we propose an extension of this method with an \emph{anisotropic mesh adaptation algorithm}. This extension allows us to track singularities of the solution's gradient more accurately. Various numerical experiments demonstrate the accuracy and the robustness of the proposed method for both constant and adaptive mesh.
For the prescribed Jacobian equation and the three-dimensional Monge-Ampère equation, we consider a \emph{least-squares/relaxation finite element method} for the numerical solution of the Dirichlet problems. We then introduce a relaxation algorithm that splits the least-square problem, which stems from a reformulation of the original equations, into local nonlinear and variational problems. We develop dedicated solvers for the algebraic problems based on Newton method and we solve the differential problems using mixed low-order finite element method. Overall the least squares approach exhibits appropriate convergence orders in $L^2(\Omega)$ and $H^1(\Omega)$ error norms for various numerical tests.
We also design a \emph{second-order time integration method} for the approximation of a parabolic two-dimensional Monge-Ampère equation. The space discretization of this method is based on low-order finite elements, and the time discretization is achieved by the implicit Crank-Nicolson type scheme.
We verify the efficiency of the proposed method on time-dependent and stationary problems. The results of numerical experiments show that the method achieves nearly optimal orders for the $L^2(\Omega)$ and $H^1(\Omega)$ error norms when smooth solutions are approximated.
Finally, we present an adaptive mesh refinement algorithm for the elliptic Monge-Ampere equation based on the residual error estimate. The robustness of the proposed algorithm is verified using various test cases and two different solvers which are inspired by the two previous proposed numerical methods.