Publication

Experimental demonstration of dynamic spatiotemporal structured beams that simultaneously exhibit two orbital angular momenta by combining multiple frequency lines, each carrying multiple Laguerre-Gaussian modes

Abstract

In general, there are different, relatively independent forms of orbital angular momenta at a given propagation distance, which might exhibit different dynamic spatial characteristics. One type involves a beam with a helical phase-front that rotates around its own beam center, such as a Laguerre-Gaussian (LG) beam with an azimuthal index not equal to zero. The other one is a Gaussian-like beam dot that revolves around a central axis. Here, we experimentally demonstrate the generation of a dynamic spatiotemporal (ST) structured beam that simultaneously exhibits both rotation and revolution at a given propagation distance. Nine Kerr frequency comb lines are coherently combined, each carrying a designed superposition of multiple LG modes containing one unique l value and multiple p values. Experimental results showthat the mode purity of the reconstructed revolving and rotating LG(30) beam is similar to 89% when both the beam waist and revolving radius (R) are 0.4 mm. Moreover, we explore the effects of the number of frequency comb lines and the R value on the mode purity of the generated ST beam. Consequently, we find that a higher mode purity can be achieved by involving more frequency comb lines or reducing the R. (C) 2022 Optica Publishing Group

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.