Publication

Efficient GPU-accelerated Join Optimization for Complex Queries

Abstract

Analytics on modern data analytic and data warehouse systems often need to run large complex queries on increasingly complex database schemas. A lot of progress has been made on executing such complex queries using techniques like scale out query processing, hardware accelerators like GPUs and code generation techniques. However, optimization of such queries remains a challenge. Existing optimal solutions either cannot be effectively parallelized, or are inefficient while doing a lot of unnecessary work. In this demonstration, we present our system, GPU-QO, which aims to demonstrate query optimization techniques for large analytical queries using GPUs. We first demonstrate Massively Parallel Dynamic Programming (MPDP) – a novel query optimization technique that can run on GPUs to generate optimal plans in a (massively) parallel and efficient manner. We then showcase IDP2-MPDP and UnionDP – two heuristic techniques, again using GPUs, that can even optimize queries containing 1000s of joins. Furthermore, we compare our techniques with current state-of-the-art solutions, and demonstrate how our techniques can reduce optimization time for optimal solutions by nearly two orders of magnitude and produce much better query plans for heuristics (up to 7x).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.