Publication

Simultaneous Prediction of Wrist and Hand Motions via Wearable Ultrasound Sensing for Natural Control of Hand Prostheses

Xingchen Yang
2022
Journal paper
Abstract

Simultaneous prediction of wrist and hand motions is essential for the natural interaction with hand prostheses. In this paper, we propose a novel multi-out Gaussian process (MOGP) model and a multi-task deep learning (MTDL) algorithm to achieve simultaneous prediction of wrist rotation (pronation/supination) and finger gestures for transradial amputees via a wearable ultrasound array. We target six finger gestures with concurrent wrist rotation in four transradial amputees. Results show that MOGP outperforms previously reported subclass discriminant analysis for both predictions of discrete finger gestures and continuous wrist rotation. Moreover, we find that MTDL has the potential to improve the accuracy of finger gesture prediction compared to MOGP and classification-specific deep learning, albeit at the expense of reducing the accuracy of wrist rotation prediction. Extended comparative analysis shows the superiority of ultrasound over surface electromyography. This paper prioritizes exploring the performance of wearable ultrasound on the simultaneous prediction of wrist and hand motions for transradial amputees, demonstrating the potential of ultrasound in future prosthetic control. Our ultrasound-based adaptive prosthetic control dataset (Ultra-Pro) will be released to promote the development of the prosthetic community.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.