Publication

Reduction of the lattice strain with increasing field amplitude in polycrystalline BiFeO3

Dragan Damjanovic
2022
Journal paper
Abstract

As dynamic interfaces in piezoelectric materials, domain walls can greatly impact the functionality under applied external fields. Recently, conductive domain walls have been found to result in Maxwell-Wagner (M-W)-like dispersion of the lattice strain and ferroelastic domain wall motion as a function of field frequency in polycrystalline BiFeO3. Here, we reveal an anomalous field-dependent behavior of the ferroelastic domain wall motion and lattice strain during field cycling. This response is dominated by a common nonlinear increase of ferroelastic domain wall motion and an unusual nonlinear reduction of the lattice strain with increasing field amplitude. Using analytical modeling, this complex field-dependent behavior of polycrystalline BiFeO3 is interpreted by the generation of opposing fields accompanying domain wall motion. Two contributors to the opposing fields are charge accumulation and movement along conductive domain walls and elastic coupling between adjacent grains.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.