Effect of femtosecond laser-induced high pressure on fused silica polymorphism
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Crystallization of amorphous layers has been demonstrated under various radically different laser-exposure conditions, including continuous wave (cw) and pulsed lasers. Here, we investigate the specific role of ionization in the crystallization of dielectr ...
Ultrashort laser pulses, i.e., pulses emitted shorter than a picosecond, can tailor material properties by introducing permanent modifications locally in three dimensions. Remarkably, under a certain exposure condition, these modifications are accompanied ...
Materials properties are strictly dependent on their microstructure. The internal symmetries and the disposition of the constituting atoms of a material, which depend on its crystallographic structure, greatly affect its response to mechanical, electromagn ...
A tightly focused femtosecond laser-beam in the non-ablative regime can induce a shockwave sufficiently intense to reach local pressures in the giga-Pascal range or more. In a single beam configuration, the location of the highest-pressure zone is nested w ...
Materials with thermal-invariant elastic properties are of interest for resonant device frequency and dimensional stability of precision devices. Here, we demonstrate that the temperature coefficient of elasticity (TCE) of amorphous silica can be locally r ...
We show that optical microcavities drive strong coherent modulations the in co-propagating free-electron beams, with sidebands spanning over 700eV from a sub-mu m-long interaction. The electrons probe the cavity's ringdown time and distinguish the modes sp ...
The ability to switch ferroics (ferro-, ferri-, antiferromagnets, ferroelectrics, multiferroics) between two stable bit states is one of the keystones of modern data storage technology. Due to many new ideas, originating from fundamental research during th ...
A novel method for the laser to fiber coupling is presented in which coarse alignment is achieved through micromachined v-grooves and mirrors in a fused silica substrate. Furthermore, fine repositioning is done in a noncontact manner by using a femtosecond ...
Over the last decades, the progress made in the generation of laser pulses shorter than a picosecond (10^-12 s) has allowed us to reach extreme optical power intensities exceeding 10^15 W cm^-2. This tremendous power has triggered an abundance of original ...
The formation of elemental trigonal tellurium (t-Te) on tellurite glass surfaces exposed to femtosecond laser pulses is discussed. Specifically, the underlying elemental crystallization phenomenon is investigated by altering laser parameters in common tell ...