Publication

Development of High-Strength Aluminum Alloys for Additive Manufacturing

Marvin Lennard Schuster
2022
EPFL thesis
Abstract

Metal additive manufacturing (AM) offers the possibility to rapidly produce complex geometries that are not achievable with conventional manufacturing methods. The two most common technologies, Laser Powder Bed Fusion (LPBF) and Direct Metal Deposition (DMD), are characterized by high process temperatures, fast heating, and cooling rates, and an associated far-from-equilibrium solidification. This is problematic when processing materials that were developed and optimized many years ago for conventional manufacturing processes. Common difficulties are the occurrence of gas pores in the component, which are caused by the evaporation of volatile alloying elements during the process, the formation of hot cracks due to large solidification intervals, and the formation of metastable phases. For the processing of high-strength, precipitation-hardening Al-Cu aluminum alloys, this prevents the use of non-modified conventional alloys. However, the development of novel alloys tailored to these processes not only allows these difficulties to be overcome but also opens up the possibility of improving material properties through the targeted exploitation of process-inherent properties. This includes the processing of oxide particle-reinforced alloys, which can not be produced by conventional casting processes. The standard heat treatment usually performed for precipitation hardening, which has also been optimized for conventional materials, must be adapted accordingly to achieve optimum material properties. Within the scope of this work, the microstructure, precipitation, and defect formation after LPBF as well as the heat treatment behavior are thoroughly investigated based on an Al-Cu-Mg-Zr alloy for the first time. The obtained findings are applied to design a novel 2618 Al-Cu alloy for LPBF and DMD, with suitable heat treatment being developed for LPBF. The alloy is characterized with respect to microstructure, precipitation formation, and mechanical properties before, during, and after heat treatment. Furthermore, by modifying elemental Al-Zr powder blends with nm-sized Al2O3, an oxide dispersion strengthened alloy is produced by LPBF and investigated in detail.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Precipitation hardening
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength. Precipitation hardening relies on changes in solid solubility with temperature to produce fine particles of an impurity phase, which impede the movement of dislocations, or defects in a crystal's lattice.
Heat treating
Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material.
Aluminium alloy
An aluminium alloy (or aluminum alloy; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions.
Show more
Related publications (49)

Dislocation Hardening in a New Manufacturing Route of Ferritic Oxide Dispersion-Strengthened Fe-14Cr Cladding Tube

Roland Logé

The microstructure evolution associated with the cold forming sequence of an Fe-14Cr-1W-0.3Ti-0.3Y2O3 grade ferritic stainless steel strengthened by dispersion of nano oxides (ODS) was investigated. The material, initially hot extruded at 1100 degrees C an ...
MDPI2024

Composition and Element Distribution Mapping of γ′ and γ" Phases of Inconel 718 by High-Resolution Scanning Transmission Electron Microscopy and X-ray Energy-Dispersive Spectrometry

Philippe Buffat

The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by gamma ' and gamma '' particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have ad ...
Basel2024

Origin of the enhanced pseudo-elasticity of additively manufactured Fe-17Mn-5Si-4Ni-10Cr-(V, C) shape memory alloy fabricated by laser powder bed fusion

Christian Leinenbach, Irene Ferretto

This study investigated the origin of the enhanced pseudo-elasticity of additively manufactured vanadium carbide-containing Fe-based shape memory alloys. The aged samples with two different starting microstructures, as-built and solution-treated, showed co ...
Lausanne2023
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more