Hilbert symbolIn mathematics, the Hilbert symbol or norm-residue symbol is a function (–, –) from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields. The Hilbert symbol has been generalized to higher local fields.
Conjugate element (field theory)In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial pK,α(x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally α itself is included in the set of conjugates of α. Equivalently, the conjugates of α are the images of α under the field automorphisms of L that leave fixed the elements of K.
Simple extensionIn field theory, a simple extension is a field extension which is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions. A field extension L/K is called a simple extension if there exists an element θ in L with This means that every element of L can be expressed as a rational fraction in θ, with coefficients in K; that is, it is produced from θ and elements of K by the field operations +, −, •, / .
Table of costs of operations in elliptic curvesElliptic curve cryptography is a popular form of public key encryption that is based on the mathematical theory of elliptic curves. Points on an elliptic curve can be added and form a group under this addition operation. This article describes the computational costs for this group addition and certain related operations that are used in elliptic curve cryptography algorithms. The next section presents a table of all the time-costs of some of the possible operations in elliptic curves.
Pseudorandom generatorIn theoretical computer science and cryptography, a pseudorandom generator (PRG) for a class of statistical tests is a deterministic procedure that maps a random seed to a longer pseudorandom string such that no statistical test in the class can distinguish between the output of the generator and the uniform distribution. The random seed itself is typically a short binary string drawn from the uniform distribution. Many different classes of statistical tests have been considered in the literature, among them the class of all Boolean circuits of a given size.
Threshold theoremIn quantum computing, the threshold theorem (or quantum fault-tolerance theorem) states that a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made fault-tolerant, as an analogue to von Neumann's threshold theorem for classical computation.