Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption ...
An important prerequisite for developing trustworthy artificial intelligence is high quality data. Crowdsourcing has emerged as a popular method of data collection in the past few years. However, there is always a concern about the quality of the data thus ...
Recent years have seen an exponential increase in the amount of data available in all sciences and application domains. Macroecology is part of this "Big Data" trend, with a strong rise in the volume of data that we are using for our research. Here, we sum ...
The climate and weather are modeled by running computer simulations. In a data-driven approach, scientists tailor the simulation to resemble reality (partly through an understanding of the physical processes, partly through their parameterization). With th ...
Big data and analytics have received great attention from practitioners and academics, nowadays representing a key resource for the renewed interest in artificial intelligence, especially for machine learning techniques. In this article we explore the use ...
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments. While many federated learning architectures process data in an online manner, and are hence adaptive by nature, most performance analyse ...
Decentralized machine learning is a promising emerging paradigm in view of global challenges of data ownership and privacy. We consider learning of linear classification and regression models, in the setting where the training data is decentralized over ma ...
The very shallow geothermal potential (vSGP) is increasingly recognized as a viable resource for providing clean thermal energy in urban and rural areas. This is primarily due to its reliability, low-cost installation, easy maintenance, and little constrai ...
We consider a distributed social learning problem where a network of agents is interested in selecting one among a finite number of hypotheses. The data collected by the agents might be heterogeneous, meaning that different sub-networks might observe data ...
Recent studies have shown that the labels collected from crowdworkers can be discriminatory with respect to sensitive attributes such as gender and race. This raises questions about the suitability of using crowdsourced data for further use, such as for tr ...