Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of the phase diagram of interest for planetary investigations. Although structural and dynamical properties of plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN) acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening when approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure and high temperature and may help in rationalizing the geology of water-rich planets. Published under an exclusive license by AIP Publishing.
Ursula Röthlisberger, Justin Villard, Martin Peter Bircher