**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration

Abstract

This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the ϵ-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that falls in this regime. In this work, we provide an initial attempt on theoretical understanding deep RL from the perspective of function class and neural networks architectures (e.g., width and depth) beyond the ``linear'' regime. To be specific, we focus on the value based algorithm with the ϵ-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces, respectively, which aims at approximating an α-smooth Q-function in a d-dimensional feature space. We prove that, with T episodes, scaling the width $m = \widetilde{\mathcal{O}}(T^{\frac{d}{2\alpha + d}})$ and the depth $L=\mathcal{O}(\log T)$ of the neural network for deep RL is sufficient for learning with sublinear regret in Besov spaces. Moreover, for a two layer neural network endowed by the Barron space, scaling the width $\Omega(\sqrt{T})$ is sufficient. To achieve this, the key issue in our analysis is how to estimate the temporal difference error under deep neural function approximation as the ϵ-greedy exploration is not enough to ensure "optimism". Our analysis reformulates the temporal difference error in an $L^2(\mathrm{d}\mu)$-integrable space over a certain averaged measure μ, and transforms it to a generalization problem under the non-iid setting. This might have its own interest in RL theory for better understanding $\epsilon$-greedy exploration in deep RL.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related publications

Related concepts (6)

Related MOOCs (8)

No results

Reinforcement learning

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected.

Learning

Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event (e.g. being burned by a hot stove), but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved.

Neural network

A neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.

Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.