Scalar curvatureIn the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls.
Negative massIn theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the oppositely oriented acceleration for an applied force orientation. It is used in certain speculative hypothetical technologies, such as time travel to the past and future, construction of traversable artificial wormholes, which may also allow for time travel, Krasnikov tubes, the Alcubierre drive, and potentially other types of faster-than-light warp drives.
History of general relativityGeneral relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses. Before the advent of general relativity, Newton's law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses, even though Newton himself did not regard the theory as the final word on the nature of gravity.
Metric tensor (general relativity)In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical content of the associated equations is entirely different.
Albert Einstein'Albert Einstein' (ˈaɪnstaɪn ; ˈalbɛʁt ˈʔaɪnʃtaɪn; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely held to be one of the greatest and most influential scientists of all time. Best known for developing the theory of relativity, he also made important contributions to quantum mechanics, and was thus a central figure in the revolutionary reshaping of the scientific understanding of nature that modern physics accomplished in the first decades of the twentieth century.
Numerical relativityNumerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.
Loop quantum cosmologyLoop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity (LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of loop quantum gravity (LQG). In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction and thereby resolving singularities of general relativity.
No-hair theoremThe no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum.
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Raychaudhuri equationIn general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter. The equation is important as a fundamental lemma for the Penrose–Hawking singularity theorems and for the study of exact solutions in general relativity, but has independent interest, since it offers a simple and general validation of our intuitive expectation that gravitation should be a universal attractive force between any two bits of mass–energy in general relativity, as it is in Newton's theory of gravitation.