Publication

Fredholm transformation on Laplacian and rapid stabilization for the heat equation

Shengquan Xiang
2022
Journal paper
Abstract

We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. This classical framework allows us to present the backstepping method with Fredholm transformations for the Laplace operator in a sharp functional setting, which is the main objective of this work. We first prove that, under some assumptions on the control operator, two scalar controls are necessary and sufficient to get controllability and rapid stabilization. Then, we prove that the Fredholm transformation constructed for the Laplacian also leads to the local rapid stability of the viscous Burgers equation. (c) 2022 Elsevier Inc. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.