Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. This classical framework allows us to present the backstepping method with Fredholm transformations for the Laplace operator in a sharp functional setting, which is the main objective of this work. We first prove that, under some assumptions on the control operator, two scalar controls are necessary and sufficient to get controllability and rapid stabilization. Then, we prove that the Fredholm transformation constructed for the Laplacian also leads to the local rapid stability of the viscous Burgers equation. (c) 2022 Elsevier Inc. All rights reserved.