Publication

A combination technique for optimal control problems constrained by random PDEs

Fabio Nobile, Tommaso Vanzan
2022
Report or working paper
Abstract

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, thus the discretized OCPs preserve the convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of Multilevel Monte Carlo and/or sparse grids approaches, but remains suitable for high dimensional problems. The manuscript presents an a-priori procedure to choose the most important mixed differences and an asymptotic complexity analysis, which states that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Asymptotic computational complexity
In computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation. With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation, such as the number of (parallel) processors.
Space complexity
The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as etc.
Show more
Related publications (38)

A Combination Technique for Optimal Control Problems Constrained by Random PDEs

Fabio Nobile, Tommaso Vanzan

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
2024

Graph generative deep learning models with an application to circuit topologies

Igor Krawczuk

Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.Managing their complexity and facilitating their design drove part of the co-evolution of moder ...
EPFL2024

Static Worst-Case Resource Analysis for Substrate Pallets

Simon Nicolas Perriard

We present saft, the first attempt of a static analyzer that extracts the asymptotic function complexity for the Polkadot/Substrate ecosystem, where the burden of accounting for computation resource consumption is put on the developer. saft is a tool meant ...
2023
Show more
Related MOOCs (20)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.