Time-evolution of local information: Thermalization dynamics of local observables
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mechanical oscillators are among the most important scientific tools in the modern physics. From the pioneering experiments in 18th by founding fathers of modern physics such as Newton, Hooke and Cavendish to the ground braking experiments in the 21th cent ...
Metal–organic frameworks show both fundamental interest and great promise for applications in adsorption-based technologies, such as the separation and storage of gases. The flexibility and complexity of the molecular scaffold pose a considerable challenge ...
We analyze a cavity optomechanical setup, in which the position of an oscillator modulates the internal optical loss. We show that, in contrast to systems with a fixed internal loss, in such a setup, quantum-limited position measurements can be performed a ...
Quantum mechanics did not only deeply transform our world view down to a philosophical level, it is also expected to be key ingredient of future so-called quantum technologies. Indeed, quantum properties of matter such as isolated single particles or entan ...
A primary challenge in quantum science and technology is to isolate the fragile quantum states from their environment in order to prevent the irreversible leakage of energy and information which causes decoherence. In the late 1990s, however, a new paradig ...
The antisymmetry of a fermionic quantum state has a marked effect on its entanglement properties. Recently, Carlen, Lieb and Reuvers (CLR) studied this effect, in particular concerning the entropy of the two-body reduced density matrix of a fermionic state ...
High symmetry epitaxial quantum dots (QDs) with three or more symmetry planes provide a very promising route for the generation of entangled photons for quantum information applications. The great challenge to fabricate nanoscopic high symmetry QDs is furt ...
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and sub ...
Two objects are entangled when their quantum mechanical wavefunctions cannot be written in a separable product form. Entangling dissimilar quantum objects, or hybridization, has been suggested as a promising route to efficient quantum information processor ...