Publication

Thermal management for gas lubricated, high-speed turbomachinery

Abstract

High-speed turbomachinery is commonly designed to achieve high power densities. Limited space for active cooling results in a challenging thermal management. A thermal modeling approach leveraging modern declarative programming capabilities is presented, yielding an efficient dynamic model capable of real-time simulation while achieving accurate results. These properties enable the inclusion of thermal management strategies in an early stage of the design process. Further, the effect of varying thermal and transport properties of materials and fluids during transient conditions is included and is suggested to yield a high impact on thermal loads and heat evacuation capabilities. The often neglected fluid advection within the system is modeled by integrating a 1D fluid network from MatlabTM SimscapeTM to the thermal model, displaying a significant impact on the temperature estimation for critical parts. The accuracy of the presented model is verified against three gas-bearing supported high-speed turbomachinery experiments for stationary and transient operation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.