Construction of the real numbersIn mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition. The article presents several such constructions. They are equivalent in the sense that, given the result of any two such constructions, there is a unique isomorphism of ordered field between them.
Dynamic pricingDynamic pricing, also referred to as surge pricing, demand pricing, or time-based pricing, is a revenue management pricing strategy in which businesses set flexible prices for products or services based on current market demands. Businesses are able to change prices based on algorithms that take into account competitor pricing, supply and demand, and other external factors in the market. Dynamic pricing is a common practice in several industries such as hospitality, tourism, entertainment, retail, electricity, and public transport.
C++ Standard LibraryIn the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself. The C++ Standard Library provides several generic containers, functions to use and manipulate these containers, function objects, generic strings and streams (including interactive and file I/O), support for some language features, and functions for common tasks such as finding the square root of a number.
Zorn's lemmaZorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. The lemma was proved (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935.