An a posteriori error estimator for isogeometric analysis on trimmed geometries
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a suitable model reduction paradigm -- the certied reduced basis method (RB) -- for the rapid and reliable solution of parametrized optimal control problems governed by partial dierential equations (PDEs). In particular, we develop the methodolo ...
Society for Industrial and Applied Mathematics2013
In this paper we provide a piecewise linear Galerkin approximation of a second order transmission problem across a highly conductive prefractal layer of von Koch type. We firstly generate an appropriate mesh adapted to the geometric shape of the interface ...
In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries. We review the essential ingredients: i) a Galerkin projection onto a low dimensional s ...
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfini ...
[B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532-5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the gr ...
We consider goal-oriented a posteriori error estimators for the evaluation of the errors on quantities of interest associated with the solution of geometrically nonlinear curved elastic rods. For the numerical solution of these nonlinear one-dimensional pr ...
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the "reduced basis". The purpose of th ...
We propose an improvement to the reduced basis method for parametric partial differential equations. An assumption of affine parameterization leads to an efficient offline-online decomposition when the problem is solved for many different parametric config ...
An anisotropic a posteriori error estimate is derived for a finite element discretization of the wave equation in two space dimensions. Only the error due to space discretization is considered, and the error estimates are derived in the nonnatural L-2(0, T ...
In this paper we derive regularity results for equilibria of multilattices under an external force and prove a priori and a posteriori error estimates for a multiscale numerical method for computing such equilibria. The estimates are derived in a W-1,W-inf ...