Knowledge extractionKnowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, s) sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL (data warehouse), the main criterion is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema.
Information extractionInformation extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains.
Knowledge graphIn knowledge representation and reasoning, knowledge graph is a knowledge base that uses a graph-structured data model or topology to integrate data. Knowledge graphs are often used to store interlinked descriptions of entities - objects, events, situations or abstract concepts - while also encoding the semantics underlying the used terminology. Since the development of the Semantic Web, knowledge graphs are often associated with linked open data projects, focusing on the connections between concepts and entities.
Knowledge baseA knowledge base (KB) is a set of sentences, each sentence given in a knowledge representation language, with interfaces to tell new sentences and to ask questions about what is known, where either of these interfaces might use inference. It is a technology used to store complex structured data used by a computer system. The initial use of the term was in connection with expert systems, which were the first knowledge-based systems. The original use of the term knowledge base was to describe one of the two sub-systems of an expert system.
Terminology extractionTerminology extraction (also known as term extraction, glossary extraction, term recognition, or terminology mining) is a subtask of information extraction. The goal of terminology extraction is to automatically extract relevant terms from a given corpus. In the semantic web era, a growing number of communities and networked enterprises started to access and interoperate through the internet. Modeling these communities and their information needs is important for several web applications, like topic-driven web crawlers, web services, recommender systems, etc.
Knowledge representation and reasoningKnowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
KnowledgeKnowledge is a form of awareness or familiarity. It is often understood as awareness of facts or as practical skills, and may also mean familiarity with objects or situations. Knowledge of facts, also called propositional knowledge, is often defined as true belief that is distinct from opinion or guesswork by virtue of justification. While there is wide agreement among philosophers that propositional knowledge is a form of true belief, many controversies in philosophy focus on justification.
Transformer (machine learning model)A transformer is a deep learning architecture that relies on the parallel multi-head attention mechanism. The modern transformer was proposed in the 2017 paper titled 'Attention Is All You Need' by Ashish Vaswani et al., Google Brain team. It is notable for requiring less training time than previous recurrent neural architectures, such as long short-term memory (LSTM), and its later variation has been prevalently adopted for training large language models on large (language) datasets, such as the Wikipedia corpus and Common Crawl, by virtue of the parallelized processing of input sequence.
RDF SchemaRDF Schema (Resource Description Framework Schema, variously abbreviated as RDFS, , RDF-S, or RDF/S) is a set of classes with certain properties using the RDF extensible knowledge representation data model, providing basic elements for the description of ontologies. It uses various forms of RDF vocabularies, intended to structure RDF resources. RDF and RDFS can be saved in a triplestore, then one can extract some knowledge from them using a query language, like SPARQL.
Knowledge modelingKnowledge modeling is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is expressed in some knowledge representation language or data structure that enables the knowledge to be interpreted by software and to be stored in a database or data exchange file.