Publication

The present and future of neural interfaces

Marcello Ienca
2022
Journal paper
Abstract

The 2020's decade will likely witness an unprecedented development and deployment of neurotechnologies for human rehabilitation, personalized use, and cognitive or other enhancement. New materials and algorithms are already enabling active brain monitoring and are allowing the development of biohybrid and neuromorphic systems that can adapt to the brain. Novel brain-computer interfaces (BCIs) have been proposed to tackle a variety of enhancement and therapeutic challenges, from improving decision-making to modulating mood disorders. While these BCIs have generally been developed in an open-loop modality to optimize their internal neural decoders, this decade will increasingly witness their validation in closed-loop systems that are able to continuously adapt to the user's mental states. Therefore, a proactive ethical approach is needed to ensure that these new technological developments go hand in hand with the development of a sound ethical framework. In this perspective article, we summarize recent developments in neural interfaces, ranging from neurohybrid synapses to closed-loop BCIs, and thereby identify the most promising macro-trends in BCI research, such as simulating vs. interfacing the brain, brain recording vs. brain stimulation, and hardware vs. software technology. Particular attention is devoted to central nervous system interfaces, especially those with application in healthcare and human enhancement. Finally, we critically assess the possible futures of neural interfacing and analyze the short- and long-term implications of such neurotechnologies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Brain–computer interface
A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine.
Neural engineering
Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs (Hetling, 2008). The field of neural engineering draws on the fields of computational neuroscience, experimental neuroscience, neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, cybernetics, computer engineering, neural tissue engineering, materials science, and nanotechnology.
Brain implant
Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision.
Show more
Related publications (67)

33.3 MiBMI: A 192/512-Channel 2.46mm² Miniaturized Brain-Machine Interface Chipset Enabling 31-Class Brain-to-Text Conversion Through Distinctive Neural Codes

Mahsa Shoaran, Uisub Shin, Gregor Rainer, Mohammad Ali Shaeri, Amitabh Yadav

Recently, cutting-edge brain-machine interfaces (BMIs) have revealed the potential of decoders such as recurrent neural networks (RNNs) in predicting attempted handwriting [1] or speech [2], enabling rapid communication recovery after paralysis. However, c ...
IEEE2024

Miniaturised, Wireless and Distributed Neural Interface Toward Cortical Visual Prosthesis

Gian Luca Barbruni

Over the last decades, implantable neural interfaces have been extensively explored and effectively deployed to address neurological and mental health disorders. The existing solutions present several limitations. Firstly, the physical size of the implanta ...
EPFL2023

Development of a Transient Neural Interface for Minimally Invasive Recording and Stimulation

Adele Fanelli

Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
EPFL2022
Show more
Related MOOCs (20)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.