Publication

Early motor skill acquisition in healthy older adults: functional MRI and connectome correlates

Manon Chloé Durand-Ruel
2022
EPFL thesis
Abstract

decrement have been proposed, such as weakened acquisition of the motor skill. While the processes at play during the initial acquisition phase have been well-characterized in young adults, they were only scarcely investigated in older adults. The goal of this thesis was to assess the neural processes occurring during the acquisition phase of motor learning in older adults. Successful functioning of the brain is complex and relies on complementary types of organization, i.e. the principles of segregation and integration. In other words, the brain is composed of segregated and specialized brain regions that interact with each other by exchanging information. Motor learning, considered as a key function of the brain, does not deviate from this organization scheme. As such, the investigation of motor learning beneficiates from the study of both functional segregation and integration.The results of this thesis are based on the acquired data of a multiple-day experiment aiming at characterizing motor learning acquisition and improving sleep-dependent motor memory consolidation in older adults and stroke patients. 43 older adults and 15 stroke patients were included in this project and completed multiple measurements involving, among other methods, a novel motor learning task performed concurrently with func-tional magnetic resonance imaging.In the first study of this thesis, we examined the functional specialization of the brain during acquisition of the motor skill by investigating the within-session dynamics and their relationship with behavioral change. The results demonstrated that motor learning ability relied on the parallel involvement of motor-related cortical areas responsible for action selection and associative parietal areas involved in visuomotor processing. In the second study of this thesis, we assessed the integration of information transfer within functional subnetworks by looking at the changes in functional topology and structure-function correspondence in relation to motor learning ability. We were able to show that motor learning ability was associated with higher flexibility in visual and cognitive/associative networks suggested by increased modularity of the functional subnetworks and a detachment of the functional connectome from the structural connectome.In conclusion, this thesis demonstrates that the acquisition of a motor skill in healthy aging relies on the in-volvement and flexibility of distributed brain regions organized in networks. The achieved results expand on the existing knowledge of motor learning and offer an indication that multimodal studies are important to comprehend the functional processes of the brain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Motor learning
Motor learning refers broadly to changes in an organism's movements that reflect changes in the structure and function of the nervous system. Motor learning occurs over varying timescales and degrees of complexity: humans learn to walk or talk over the course of years, but continue to adjust to changes in height, weight, strength etc. over their lifetimes. Motor learning enables animals to gain new skills, and improves the smoothness and accuracy of movements, in some cases by calibrating simple movements like reflexes.
Motor skill
A motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together. The goal of motor skill is to optimize the ability to perform the skill at the rate of success, precision, and to reduce the energy consumption required for performance. Performance is an act of executing a motor skill or task.
Gross motor skill
Gross motor skills are the abilities usually acquired during childhood as part of a child's motor learning. By the time they reach two years of age, almost all children are able to stand up, walk and run, walk up stairs, etc. These skills are built upon, improved and better controlled throughout early childhood, and continue in refinement throughout most of the individual's years of development into adulthood. These gross movements come from large muscle groups and whole body movement.
Show more
Related publications (70)

Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills

Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué

Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, ...
Nature Portfolio2024

Early motor skill acquisition in healthy older adults: brain correlates of the learning process

Friedhelm Christoph Hummel, Takuya Morishita, Pablo Maceira Elvira, Manon Chloé Durand-Ruel, Chang-Hyun Park, Maeva Moyne

Motor skill learning is a crucial process at all ages. However, healthy aging is often accompanied by a reduction in motor learning capabilities. This study characterized the brain dynamics of healthy older adults during motor skill acquisition and identif ...
OXFORD UNIV PRESS INC2023

Brain connectome correlates of short-term motor learning in healthy older subjects

Friedhelm Christoph Hummel, Takuya Morishita, Manon Chloé Durand-Ruel, Chang-Hyun Park, Maeva Moyne

The motor learning process entails plastic changes in the brain, especially in brain network reconfigurations. In the current study, we sought to characterize motor learning by determining changes in the coupling behaviour between the brain functional and ...
Paris2023
Show more
Related MOOCs (24)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.