Holocene climatic optimumThe Holocene Climate Optimum (HCO) was a warm period that occurred in the interval roughly 9,500 to 5,500 years ago BP, with a thermal maximum around 8000 years BP. It has also been known by many other names, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Hypsithermal, and Mid-Holocene Warm Period. The warm period was followed by a gradual decline, of about 0.1 to 0.3 °C per millennium, until about two centuries ago.
PleistoceneThe Pleistocene (ˈplaɪstəˌsiːn,_-stoʊ- ; often referred to colloquially as the Ice Age) is the geological epoch that lasted from 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period.
Glacial lakeA glacial lake is a body of water with origins from glacier activity. They are formed when a glacier erodes the land and then melts, filling the depression created by the glacier. Near the end of the last glacial period, roughly 10,000 years ago, glaciers began to retreat. A retreating glacier often left behind large deposits of ice in hollows between drumlins or hills. As the ice age ended, these melted to create lakes. This is apparent in the Lake District in Northwestern England where post-glacial sediments are normally between 4 and 6 metres deep.
Würm glaciationThe Würm glaciation or Würm stage (Würm-Kaltzeit or Würm-Glazial, colloquially often also Würmeiszeit or Würmzeit; cf. ice age), usually referred to in the literature as the Würm (often spelled "Wurm"), was the last glacial period in the Alpine region. It is the youngest of the major glaciations of the region that extended beyond the Alps themselves. Like most of the other ice ages of the Pleistocene epoch, it is named after a river, in this case the Würm in Bavaria, a tributary of the Amper.
Heinrich eventA Heinrich event is a natural phenomenon in which large groups of icebergs break off from the Laurentide Ice Sheet and traverse the Hudson Strait into the North Atlantic. First described by marine geologist Hartmut Heinrich, they occurred during five of the last seven glacial periods over the past 640,000 years. Heinrich events are particularly well documented for the last glacial period but notably absent from the penultimate glaciation.
QuaternaryThe Quaternary (kwəˈtɜrnəri,_ˈkwɒtərnɛri ) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene (2.58 million years ago to 11.7 thousand years ago) and the Holocene (11.7 thousand years ago to today) although a third epoch, the Anthropocene, has been proposed but is not officially recognised by the ICS.
Ice sheetIn glaciology, an ice sheet, also known as a continental glacier, is a mass of glacial ice that covers surrounding terrain and is greater than . The only current ice sheets are in Antarctica and Greenland; during the Last Glacial Period at Last Glacial Maximum, the Laurentide Ice Sheet covered much of North America, the Weichselian ice sheet covered Northern Europe and the Patagonian Ice Sheet covered southern South America. Ice sheets are bigger than ice shelves or alpine glaciers.
EburonianThe Eburonian (Eburon or Eburonium), or, much less commonly, the Eburonian Stage, is a glacial complex in the Calabrian age of the Pleistocene epoch and lies between the Tegelen and the Waalian interglacial. The transition from the Tegelen to the Eburonian started about 1.78 million years ago, lasted 480,000 years (to 1.3 million years ago). In geologic strata, at its base, from its startpoint, the Neogene underlies different Gelasian deposits starkly in much of the Netherlands.
Tipping points in the climate systemIn climate science, a tipping point is a critical threshold that, when crossed, leads to large and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society. Tipping behavior is found across the climate system, in ecosystems, ice sheets, and the circulation of the ocean and atmosphere. Tipping points are often, but not necessarily, abrupt. For example, with average global warming somewhere between and , the Greenland ice sheet passes a tipping point and is doomed, but its melt would take place over millennia.
Atmospheric methaneAtmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methaneone of the most potent greenhouse gasesis increasing due to methane emissions, and is causing climate change. Methane's radiative forcing (RF) of climate is direct, and it is the second largest contributor to human-caused climate forcing in the historical period. Methane is a major source of water vapour in the stratosphere through oxidation; and water vapour adds about 15% to methane's radiative forcing effect.