Atmospheric impacts and ice core imprints of a methane pulse from clathrates
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Isoprene and its oxidation products are major players in the oxidative chemistry of the troposphere. Current understanding of the factors controlling biogenic isoprene emissions and of the fate of isoprene oxidation products in the atmosphere has been evol ...
The largest natural increases in atmospheric CO2 concentration as recorded in ice cores occur when the Earth climate abruptly shifts from a glacial to an interglacial state. Open questions remain regarding the processes at play, the sequences of events and ...
Ice core analysis provides the most direct evidence of changes in some major greenhouse gases (CO2, CH4 and N2O) over the climatic cycle covering approximately the last 150,000 years. A remarkable overall correlation is observed between the CO2 or CH4 reco ...
We measured the methane mixing ratios of enclosed air in five ice core sections drilled on the East Antarctic Plateau. Our work aims to study two effects that alter the recorded gas concentrations in ice cores: layered gas trapping artifacts and firn smoot ...
During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard-Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the wa ...
We present a new gridded climate reconstruction for Europe for the last 12,000 years based on pollen data. The reconstruction is an update of Davis et al. (2003) using the same methodology, but with a greatly expanded fossil and surface-sample dataset and ...
Analyses of air extracted from polar ice cores are the most straightforward method of reconstructing the atmospheric concentrations of greenhouse gases and their variations for past climatic epochs. These measurements show that the concentration of the thr ...
Due to the scarcity of reliable and highly resolved moisture proxies covering much of the Holocene, there has been increased interest in the study of living and subfossil peatland trees sensitive to gradual and extreme changes in hydrology, precipitation, ...
Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied and ...
Wetlands comprise the single largest global source of atmospheric methane, but current flux estimates disagree in both magnitude and distribution at the continental scale. This study uses atmospheric methane observations over North America from 2007 to 200 ...