The atmospheric CH4 increase since the Last Glacial Maximum: (1). Source estimates
Related publications (216)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Here, we present an analysis of monthly, seasonal, and annual long-term precipitation time-series compiled from coastal meteorological stations in Greenland and Greenland Ice Sheet (GrIS) ice cores (including three new ice core records from ACT11D, Tunu201 ...
Firn air and ice have been sampled and analyzed for trace gases (CO2, N2O, CH4, and CO) and isotopes (14C, 13C, and 18O of CO2; 3H of ice) at 3 m intervals from the surface to the depth of closure at 60 m on the Devon Island Ice Cap, a low-elevation perman ...
Ice shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form between meteoric inflows in ice shelves. This heterogeneity can consist of marine ice, meteoric ice with modified rheological properties ...
The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate-biosphere-chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by me ...
We measured the methane mixing ratios of enclosed air in five ice core sections drilled on the East Antarctic Plateau. Our work aims to study two effects that alter the recorded gas concentrations in ice cores: layered gas trapping artifacts and firn smoot ...
The NASA announcement of record surface melting of the Greenland ice sheet in July 2012 led us to examine the atmospheric and oceanic climatic anomalies that are likely to have contributed to these exceptional conditions and also to ask the question of how ...
Analyses of air extracted from polar ice cores are the most straightforward method of reconstructing the atmospheric concentrations of greenhouse gases and their variations for past climatic epochs. These measurements show that the concentration of the thr ...
Sea ice/snow surface interactions with the atmosphere are major drivers of large-scale patterns of sea ice flows and deformations in Polar Regions. Climate and weather prediction models require parameterizations of the subgrid-scale surface drag caused by ...
Ice core analysis provides the most direct evidence of changes in some major greenhouse gases (CO2, CH4 and N2O) over the climatic cycle covering approximately the last 150,000 years. A remarkable overall correlation is observed between the CO2 or CH4 reco ...
Using new and previously published CO2 data from the EPICA Dome C ice core (EDC), we reconstruct a new high-resolution record of atmospheric CO2 during Marine Isotope Stage (MIS) 6 (190 to 135 ka) the penultimate glacial period. Similar to the last glacial ...