Low-Rank Subspaces for Unsupervised Entity Linking
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Keyphrase extraction is the task of automatically selecting a small set of phrases that best describe a given free text document. Keyphrases can be used for indexing, searching, aggregating and summarizing text documents, serving many automatic as well as ...
2018
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
EPFL2016
The presentation reports on the on-going work to automatically process heterogeneous historical documents. After a quick overview of the general processing pipeline, a few examples are more comprehensively described. The recent progress in making large col ...
Distributed representations of words which map each word to a continuous vector have proven useful in capturing important linguistic information not only in a single language but also across different languages. Current unsupervised adversarial approaches ...
We present an automatic method for trend detection in job ads. From a job-posting website, we collect job ads from 16 countries and in 8 languages and 6 job domains. We pre-process them by removing stop words, lemmatising and performing cross-domain filter ...
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a edges) has proved to be beneficial in an array of NLP tasks including inference, textual entailment, question answering and information extraction. Such widespread ut ...
Massive digitization of archival material, coupled with automatic document processing techniques and data visualisation tools offers great opportunities for reconstructing and exploring the past. Unprecedented wealth of historical data (e.g. names of perso ...
Since 2004 the European Commission's Joint Research Centre (JRC) has been analysing the online version of printed media in over twenty languages and has automatically recognised and compiled large amounts of named entities (persons and organisations) and t ...
Discovering the appropriate type of an entity in the Web of Data is still considered an open challenge, given the complexity of the many tasks it entails. Among them, the most notable is the definition of a generic and cross-domain ontology. While the onto ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...