Modeling of saturated external MHD instabilities in tokamaks: A comparison of 3D free boundary equilibria and nonlinear stability calculations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The control and confinement of fusion plasmas are currently limited by a lack of understanding of the physical mechanisms behind the evolution of the turbulent transport experienced by particles and energy. In-situ investigations of plasma turbulence in fu ...
The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma reg ...
In the following theoretical and numerically oriented work, a number of findings have been assembled. The newly devised VENUS-LEVIS code, designed to accurately solve the motion of energetic particles in the presence of 3D magnetic fields, relies on a non- ...
The Mega Ampere Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation
for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key
results in unders ...
Similarly to neutral fluids, plasmas often exhibit turbulent behavior. Turbulence in plasmas is usually more complex than in neutral fluids due to long range interactions via electric and magnetic fields, and kinetic effects. It gives rise to many interest ...
Bifurcated magnetohydrodynamic (MHD) equilibrium states are computed for ITER hybrid scenario and RFX-mod SHAx configurations with very flat or reversed core magnetic shear conditions. In the ITER studies, the minimum inverse rotational transform qmin is n ...
A new version of the MHD_NX code, that computes the ideal MHD stability of helically symmetric equilibria with arbitrary topology of magnetic surfaces, was applied to the investigation of equilibrium magnetic islands in tokamak-like conditions. Any helical ...
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
Axially symmetric m = 0 magnetic islands are studied in a cylindrical plasma with longitudinal magnetic field reversal. Applying 2D deformation on the equilibrium plasma boundary results in the breaking of magnetic surfaces topology into chain of islands. ...
The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge lo ...