Publication

General invariance and equilibrium conditions for lattice dynamics in 1D, 2D, and 3D materials

Abstract

The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties, superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and equilibrium conditions of the lattice potential; these allow to recover the quadratic dispersions of flexural phonons in low-dimensional materials, in agreement with the phenomenological model for long-wavelength bending modes. We also prove that for any low-dimensional material the bending modes can have a purely out-of-plane polarization in the vacuum direction and a quadratic dispersion in the long-wavelength limit. In addition, we propose an effective approach to treat invariance conditions in crystals with non-vanishing Born effective charges where the long-range dipole-dipole interactions induce a contribution to the lattice potential and stress tensor. Our approach is successfully applied to the phonon dispersions of 158 two-dimensional materials, highlighting its critical relevance in the study of phonon-mediated properties of low-dimensional materials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.