Giant switchable non thermally-activated conduction in 180 degrees domain walls in tetragonal Pb(Zr,Ti)O-3
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from t ...
2014
Ferroelectrics are materials with a spontaneous electrical polarization, which can be switched by an applied electric field between two or more stable orientations permitted by symmetry. The regions where the ferroelectric material is polarized in one dire ...
EPFL2013
, , ,
The properties of ferroelectric materials, such as lead zirconate titanate (PZT), are heavily influenced by the interaction of defects with domain walls. These defects are either intrinsic or are induced by the addition of dopants. We study here PbTiO3 (th ...
Amer Physical Soc2013
This thesis consists of a theoretical analysis of charged domain walls in ferroelectrics based on Landau theory and the theory of semiconductors. First, the internal structure of a 180-degree charged domain wall is considered. It is shown that different re ...
EPFL2012
, ,
Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferro ...
Amer Inst Physics2015
We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how t ...
The olivine compound Mn2GeO4 is shown to feature both a ferroelectric polarization and a ferromagnetic magnetization that are directly coupled and point along the same direction. We show that a spin spiral generates ferroelectricity, and a canted commensur ...
"More with less" has been the motto behind the hardware miniaturization trend in the microelectronics industry since the 1970s. Active research in the growth of oxide films, including ferroelectrics, which started soon after, followed the same trend. Meanw ...
Control of magnetic domain walls (DWs) and their propagation is among the most promising development directions for future information-storage devices. The well-established tools for such manipulation are the spin-torque transfer from electrical currents a ...
The growing demand for higher computing power and element density continuously drives the development of novel device concepts. One group of materials currently attracting a lot of interest are the magnetoelectric multiferroics, due to their potential for ...