Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. An old conjecture states that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n vertices is O(n). Fox and Pach showed that every k-quasi-pla ...
In this paper, we evaluate the performances of state-of-the art higher-order masking schemes for the AES. Doing so, we pay a particular attention to the comparison between specialized solutions introduced exclusively as countermeasures against side-channel ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
This thesis is devoted to crossing patterns of edges in topological graphs. We consider the following four problems: A thrackle is a graph drawn in the plane such that every pair of edges meet exactly once: either at a common endpoint or in a proper crossi ...
Let G = (V, E) be a graph with n vertices and m >= 4n edges drawn in the plane. The celebrated Crossing Lemma states that G has at least Omega(m(3)/n(2)) pairs of crossing edges; or equivalently, there is an edge that crosses Omega(m(2)/n(2)) other edges. ...
Let G be a graph with n vertices and ea parts per thousand yen4n edges, drawn in the plane in such a way that if two or more edges (arcs) share an interior point p, then they properly cross one another at p. It is shown that the number of crossing points, ...
Non-adaptive group testing involves grouping arbitrary subsets of n items into different pools and identifying defective items based on tests obtained for each pool. Motivated by applications in network tomography, sensor networks and infection propagati ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2010
We study complexity and approximation of MIN WEIGHTED NODE COLORING in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove ...
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j + k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j, k)-graph. For a fixed j and k ...