Transcendental functionIn mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically. Examples of transcendental functions include the exponential function, the logarithm, and the trigonometric functions. Formally, an analytic function f (z) of one real or complex variable z is transcendental if it is algebraically independent of that variable.
Integration by partsIn calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.
Discrete categoryIn mathematics, in the field of , a discrete category is a category whose only morphisms are the identity morphisms: homC(X, X) = {idX} for all objects X homC(X, Y) = ∅ for all objects X ≠ Y Since by axioms, there is always the identity morphism between the same object, we can express the above as condition on the cardinality of the hom-set | homC(X, Y) | is 1 when X = Y and 0 when X is not equal to Y. Some authors prefer a weaker notion, where a discrete category merely needs to be equivalent to such a category.
Zero of a functionIn mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function , is a member of the domain of such that vanishes at ; that is, the function attains the value of 0 at , or equivalently, is the solution to the equation . A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function.
Indicator functionIn mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if A is a subset of some set X, then if and otherwise, where is a common notation for the indicator function. Other common notations are and The indicator function of A is the Iverson bracket of the property of belonging to A; that is, For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers.
Initial and terminal objectsIn , a branch of mathematics, an initial object of a C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The notion is that of a terminal object (also called terminal element): T is terminal if for every object X in C there exists exactly one morphism X → T. Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object.
Domain of a functionIn mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function , the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that X and Y are both subsets of , the function f can be graphed in the Cartesian coordinate system.
Level setIn mathematics, a level set of a real-valued function f of n real variables is a set where the function takes on a given constant value c, that is: When the number of independent variables is two, a level set is called a level curve, also known as contour line or isoline; so a level curve is the set of all real-valued solutions of an equation in two variables x_1 and x_2. When n = 3, a level set is called a level surface (or isosurface); so a level surface is the set of all real-valued roots of an equation in three variables x_1, x_2 and x_3.
Discrete optimizationDiscrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers. Three notable branches of discrete optimization are: combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures integer programming constraint programming These branches are all closely intertwined however since many combinatorial optimization problems can be modeled as integer programs (e.