Natural-Looking Adversarial Examples From Freehand Sketches
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
State-of-the-art methods for image-to-image translation with Generative Adversarial Networks (GANs) can learn a mapping from one domain to another domain using unpaired image data. However, these methods require the training of one specific model for every ...
The task of Heterogeneous Face Recognition consists in matching face images that are sensed in different domains, such as sketches to photographs (visual spectra images), thermal images to photographs or near-infrared images to photographs.
In this work we ...
State-of-the-art deep face recognition approaches report near perfect performance on popular benchmarks, e.g., Labeled Faces in the Wild. However, their performance deteriorates significantly when they are applied on low quality images, such as those acqui ...
This contribution presents a new database to address current challenges in face recognition. It contains face video sequences of 75 individuals acquired either through a laptop webcam or when mimicking the front-facing camera of a smartphone. Sequences hav ...
Imaging devices have become ubiquitous in modern life, and many of us capture an increasing number of images every day. When we choose to share or store some of these images, our primary selection criterion is to choose the most visually pleasing ones. Yet ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
"Pictures of objects behind a glass are difficult to interpret" "and understand due to the superposition of two real images: a reflection layer and a background layer. Separation of these two layers is challenging due to the ambiguities in as- signing text ...
Recently, Kannan et al. [2018] proposed several logit regularization methods to improve the adversarial robustness of classifiers. We show that the computationally fast methods they propose - Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) - just make ...
Deep Neural Networks have achieved extraordinary results on image classification tasks, but have been shown to be vulnerable to attacks with carefully crafted perturbations of the input data. Although most attacks usually change values of many image's pixe ...
Event cameras are bio-inspired vision sensors that naturally capture the dynamics of a scene, filtering out redundant information. This paper presents a deep neural network approach that unlocks the potential of event cameras on a challenging motion-estima ...