Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Recently, adaptive non-shivering thermogenesis has attracted considerable attention because it can elevate energy expenditure and help treat obesity. Despite the numerous reports related to UCP1-driven thermogenesis, little is known regarding UCP1-independent thermogenesis in adipose tissues and muscle. Therefore, it is essential to identify the molecular targets for UCP1-independent thermogenesis and their mechanisms to increase the energy expenditure pharmacologically in both adipocytes and muscle. This study examined whether trans-anethole (TA), a major component of the essential oils of fennel, induces UCP1-independent SERCA/SLN-based thermogenesis and promotes the lipid metabolism in muscle cells. TA enhanced myogenesis, lipolysis, and the oxidative metabolism in C2C12 muscle cells. More importantly, TA activated the SERCA/SLN/RYR axis, thereby inducing thermogenesis in muscle cells. Molecular docking analysis revealed a good interaction between SERCA with TA with a strong bind activity. In conclusion, the current data unveiled a previously unknown mechanism of TA in myoblasts and suggests a possible therapeutic agent in muscles by enhancing energy expenditure.
Johan Auwerx, Olivier Burri, Xiaoxu Li, Tanes Imamura de Lima, Giacomo Vincenzo Giorgio Von Alvensleben, Martin Rainer Wohlwend, Pirkka-Pekka Untamo Laurila, Ludger Jan Elzuë Goeminne, Barbara Moreira Crisol, Amélia Lalou, Renata Mangione
Vera Monica Lemos Da Silva, Ludger Jan Elzuë Goeminne, Barbara Moreira Crisol, Eduardo Rochete Ropelle
Bart Deplancke, Julie Marie Russeil, Sonia Karaz, Maria Deak, Umji Lee, Benjamin D. Cosgrove