**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# The elliptical Ornstein-Uhlenbeck process

Abstract

We introduce the elliptical Ornstein-Uhlenbeck (OU) process, which is a generalisation of the well-known univariate OU process to bivariate time series. This process maps out elliptical stochastic oscillations over time in the complex plane, which are observed in many applications of coupled bivariate time series. The appeal of the model is that elliptical oscillations are generated using one simple first order stochastic differential equation (SDE), whereas alternative models require more complicated vectorised or higher order SDE representations. The second useful feature is that parameter estimation can be performed semi-parametrically in the frequency domain using the Whittle Likelihood. We determine properties of the model including the conditions for stationarity, and the geometrical structure of the elliptical oscillations. We demonstrate the utility of the model by measuring periodic and elliptical properties of Earth's polar motion.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (38)

Related MOOCs (32)

Related concepts (33)

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Stochastic differential equation

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the derivative of a Brownian motion or more generally a semimartingale.

Differential equation

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Partial differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.

This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...

We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...

Victor Panaretos, Neda Mohammadi Jouzdani

We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...