A Two-Step Approach To Leverage Contextual Data: Speech Recognition In Air-Traffic Communications
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information suc ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech ...
In this paper we propose a novel virtual simulation-pilot engine for speeding up air traffic controller (ATCo) training by integrating different state-of-the-art artificial intelligence (AI)-based tools. The virtual simulation-pilot engine receives spoken ...
Automatic speech recognition and understanding (ASRU) for air traffic control (ATC) has been investigated in different ATC environments and applications. The objective of this study was to quantify the effect of ASRU support for air traffic controllers (AT ...
Contextual adaptation of ASR can be very beneficial for multi-accent and often noisy Air-Traffic Control (ATC) speech. Our focus is call-sign recognition, which can be used to track conversations of ATC operators with individual airplanes. We developed a t ...
We present the HIPE-2022 shared task on named entity processing in multilingual historical documents. Following the success of the first CLEF-HIPE-2020 evaluation lab, this edition confronts systems with the challenges of dealing with more languages, learn ...
Springer International Publishing2022
Speaker recognition systems are playing a key role in modern online applications. Though the susceptibility of these systems to discrimination according to group fairness metrics has been recently studied, their assessment has been mainly focused on the di ...
ISCA-INT SPEECH COMMUNICATION ASSOC2021
,
This article introduces the task of visual question answering for remote sensing data (RSVQA). Remote sensing images contain a wealth of information, which can be useful for a wide range of tasks, including land cover classification, object counting, or de ...