Atmospheric trace gases and aerosols and climate interact in many ways. A quantitative assessment of the influence of trace gases and aerosols on climate can only be achieved if the interactions and feedbacks among these three major components are accounted for. The goal of this thesis was to develop, evaluate and apply the ECHAM5-HAMMOZ chemistry-aerosol-climate model. The model includes fully interactive simulations of the NOx-Ox-hydrocarbons chemistry and of the aerosol chemistry and microphysics, the two simulations being embedded into the well established ECHAM5 climate model. In particular, on-line calculation of the photolysis rates (that accounts for aerosols and clouds) and heterogeneous reactions of trace gases on aerosols are accounted for in the model. In addition, the aerosol simulation provides a prognostic representation of the mixing state of the aerosol components, a feature that is particularly important to examine the effect of the SO2 uptake and subsequent sulfate formation on aerosols. A thorough model evaluation of the model was performed using observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. We also used ground based measurements from the European network EMEP (SO2 and sulfate), from the north American network IMPROVE (sulfate, black carbon and organic carbon), and from AERONET (aerosol optical depth). The coupled model is able to reproduce fairly well many of the observations over the TRACE-P region, even though some improvements are still needed. For example, we find a mean absolute bias of 20 ppbv (30%) and 40 ppbv (13%) for the simulated O3 and CO, respectively. Sulfate concentrations are represented fairly well, for all the regions considered, while SO2 is overestimated by a factor of 2 in general. Black carbon concentrations are underestimated over the TRACE-P region (mean absolute bias of 80%), most probably because of too low emissions, but well reproduced over north America. The aerosol optical depths compare well with observations at many sites in general, both in terms of annual means and seasonal variations. We show the results from a series of sensitivity simulations which goals are to assess the impact of heterogeneous reactions, photolysis reactions and sulfur chemistry on the regional and global trace gas distribution, and aerosol distribution, composition and optical properties. We found that heterogeneous reactions result in a reduction of 7% in the global O3 burden, and by up to 15% in surface O3 over regions rich in mineral dust. OH burden decreases by 10%, NO and NO2 by 20% and 29%, respectively while CO burden increases by 7%. Our numbers fall in general within the range of previous studies. We find that the effect of aerosols through the modifications of photolysis rates do not affect significantly the trace gas distributions and global burdens, while previous studies suggested larger effect. Heterogeneous reactions reduce the global mean SO2 surface
Julia Schmale, Andrea Baccarini, Benjamin Jérémy Laurent Heutte