The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...
Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data st ...
EncodingActs investigates how computational methods can facilitate the transmission of multifaceted knowledge within intangible cultural heritage (ICH). ICH, characterized by living, tacit, yet complex epistemic systems, is conventionally viewed as challen ...
Microorganisms are a key component in the chain of life. They are essential for agriculture, produce a large proportion of oxygen, and play a central role in the cycle of elements. Microorganisms are widely used in the production of food and alcoholic beve ...
In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Peclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Str ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
Microorganisms are essential for life on Earth, performing key roles in numerous biological processes. Their influence extends across a wide spectrum, from human health and ecological balance to advancements in biotechnology and industrial applications. Th ...
Using the GKEngine code which simulates an electrostatic plasma with adiabatic electron response under a sheared-slab geometry, an attempt at developing a hybrid approach between the delta-f and full-f schemes to describe plasma profiles exhibiting high fl ...
Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...
Background and Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data wi ...