Improving Multi-agent Coordination by Learning to Estimate Contention
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinem ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
This work studies the learning process over social networks under partial and random information sharing. In traditional social learning models, agents exchange full belief information with each other while trying to infer the true state of nature. We stud ...
The combination of several interesting characteristics makes metal-organic frameworks (MOFs) a highly sought-after class of nanomaterials for a broad range of applications like gas storage and separation, catalysis, drug delivery, and so on. However, the e ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Buildings play a pivotal role in the ongoing worldwide energy transition, accounting for 30% of the global energy consumption. With traditional engineering solutions reaching their limits to tackle such large-scale problems, data-driven methods and Machine ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...