Learning to Create Sentence Semantic Relation Graphs for Multi-Document Summarization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper examines how the European press dealt with the no-vax reactions against the Covid-19 vaccine and the dis- and misinformation associated with this movement. Using a curated dataset of 1786 articles from 19 European newspapers on the anti-vaccine ...
Keyphrase extraction is the task of automatically selecting a small set of phrases that best describe a given free text document. Keyphrases can be used for indexing, searching, aggregating and summarizing text documents, serving many automatic as well as ...
Robustness of medical image classification models is limited by its exposure to the candidate disease classes. Generalized zero shot learning (GZSL) aims at correctly predicting seen and unseen classes and most current GZSL approaches have focused on the s ...
Most of the Natural Language Processing (NLP) algorithms involve use of distributed vector representations of linguistic units (primarily words and sentences) also known as embeddings in one way or another. These embeddings come in two flavours namely, sta ...
The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simpl ...
In this paper, we study how to extract visual concepts to understand landscape scenicness. Using visual feature representations from a Convolutional Neural Network (CNN), we learn a number of Concept Activation Vectors (CAV) aligned with semantic concepts ...
Different senses of source words must often be rendered by different words in the target language when performing machine translation (MT). Selecting the correct translation of polysemous words can be done based on the contexts of use. However, state-of-th ...
In the present information era, a huge amount of machine-readable data is available regarding scientific publications. Such unprecedented wealth of data offers the opportunity to investigate science itself as a complex interacting system by means of quanti ...
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a edges) has proved to be beneficial in an array of NLP tasks including inference, textual entailment, question answering and information extraction. Such widespread ut ...
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to ...