A Machine Learning-based Framework for Forecasting Sales of New Products With Short Life Cycles Using Deep Neural Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Water quality prediction in the spatially heterogeneous environment is challenging as the importance of water quality parameters (WQPs) and the performance of prediction models may vary across space. Thus, this study proposed spatially adaptive machine lea ...
A central question of machine learning is how deep nets manage to learn tasks in high dimensions. An appealing hypothesis is that they achieve this feat by building a representation of the data where information irrelevant to the task is lost. For image da ...
BackgroundInterstitial lung diseases (ILD), such as idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP), and chronic obstructive pulmonary disease (COPD) are severe, progressive pulmonary disorders with a poor prognosis. Prom ...
Knowledge of a program's input format is essential for effective input generation in fuzzing. Automated input format reverse engineering represents an attractive but challenging approach to learning the format. In this paper, we address several challenges ...
The Lizorkin space is well suited to the study of operators like fractional Laplacians and the Radon transform. In this paper, we show that the space is unfortunately not complemented in the Schwartz space. In return, we show that it is dense in C0(Double- ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
Advances in soft sensors coupled with machine learning are enabling increasingly capable wearable systems. Since hand motion in particular can convey useful information for developing intuitive interfaces, glove-based systems can have a significant impact ...
Institute of Electrical and Electronics Engineers Inc.2022
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Accurate segmentation of pulmonary airways and vessels is crucial for the diagnosis and treatment of pulmonary diseases. However, current deep learning approaches suffer from disconnectivity issues that hinder their clinical usefulness. To address this cha ...
Anomaly Detection systems based on Machine and Deep learning are the most promising solutions to detect cyberattacks in the industry. However, these techniques are vulnerable to adversarial attacks that downgrade prediction performance. Several techniques ...