A water-gating and zinc-sieving lignocellulose nanofiber separator for dendrite-free rechargeable aqueous zinc ion battery
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Although Al-air batteries are expected to be the candidates for energy conversion systems in renewable energy market due to the higher energy density, richer reserves, and lighter mass of Al metal, the anode self-discharge is seen as a notorious issue that ...
Zinc metal batteries are strongly hindered by water corrosion, as solvated zinc ions would bring the active water molecules to the electrode/electrolyte interface constantly. Herein, we report a sacrificial solvation shell to repel active water molecules f ...
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...
Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized S ...
Aqueous rechargeable zinc ion batteries (ZIBs) are regarded as a promising candidates for next-generation energy storage devices but strongly hindered by the limited utilization of the zinc metal anode (below 5%) due to the active water/anion corrosion. He ...
The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic li ...
Continuous dendrites growth, as well as corrosion and side reactions of Zn metal anode seriously hinder the development of aqueous zinc ion batteries. To address these issues, oleic acid (OA) is dispersed into a 2 M ZnSO4 solution to form a novel colloidal ...
Fast and uniform ion transport within the solid electrolyte interphase (SEI) is considered a crucial factor for ensuring the long-term stability of metal electrodes. In this study, we present the fabrication of ultrathin artificial interphases consisting o ...
Fluorination of solvents, useful for non-aqueous lithium-based batteries, improves the electrochemical stability but decreases the ionic conductivity. Here, the authors report a targeted functionalization of an ether solvent to balance the electrolyte ioni ...
The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting ...