Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Drops are well known to rebound from superhydrophobic surfaces and from liquid surfaces. Here, we show that drops can also rebound from a superhydrophilic solid surface such as an atomically smooth mica sheet. However, the coefficient of restitution CR ass ...
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of llumination to create a solid polymer network. How ...
Solid-liquid interfaces are central to nanoscale science and technology and control processes as diverse as self-assembly, heterogeneous catalysis, wetting, electrochemistry, or protein function. Experimentally, measuring the structure and dynamics of soli ...
Dynamic wetting phenomena lack of a proper qualitative and quantitative characterization, especially at the micro and nanoscale. The project focuses on the design and fabrication of AFM tips capable of measuring forces and energies involved in wetting phen ...
Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate cells in suspension, the “swirling” (or orbital shaking) of a container ensures good mixing and gas exchange in a simple and intuitive way. Despite being used ...
This paper presents a novel in-liquid method to manipulate and micro-assemble MEMS in 3D by means of holographic optical trapping and hydrophobic interaction. Up to eight traps can be simultaneously generated with a trapping stiffness of 5 pN/mu m each. SU ...
We directly measure the rapid spreading dynamics succeeding the impact of a droplet of fluid on a solid, dry surface. Upon impact, the air separating the liquid from the solid surface fails to drain and wetting is delayed as the liquid rapidly spreads outw ...
We directly measure the rapid spreading dynamics succeeding the impact of a droplet of fluid on a solid, dry surface. Upon impact, the air separating the liquid from the solid surface fails to drain and wetting is delayed as the liquid rapidly spreads outw ...
We present a simulation of the liquid-vapor interface of argon with explicit inclusion of the three-body interactions. The three-body contributions to the surface tension are calculated using the Kirkwood-Buff approach. Monte Carlo calculations of the long ...
Before a falling drop can contact a solid surface, it must displace the air beneath it. Recent calculations and experiments show that as the drop approaches the surface, the air fails to drain, and instead compresses. As the air compresses, the pressure in ...