Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
The use of point clouds as an imaging modality has been rapidly growing, motivating research on compression methods to enable efficient transmission and storage for many applications. While compression standards relying on conven- tional techniques such as ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
In this thesis, we explore techniques for addressing the communication bottleneck in data-parallel distributed training of deep learning models. We investigate algorithms that either reduce the size of the messages that are exchanged between workers, or th ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
Snowfall is an essential component of the hydrological cycle, as it is involved in most precipitation on Earth, either directly as snow falling to the ground or indirectly as rain melted from snow. At the same time, the ice phase of clouds and precipitatio ...
The growing adoption of point clouds as an imaging modality has stimulated the search for efficient solutions for compression. Learning-based algorithms have been reporting increasingly better performance and are drawing the attention from the research com ...