Numerical simulation of immiscible incompressible viscous, viscoelastic and elastic multiphase flows
Related publications (162)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Despite tremendous progress seen in the computational fluid dynamics community for the past few decades, numerical tools are still too slow for the simulation of practical flow problems, consuming thousands or even millions of computational core-hours. To ...
In the past decade, model order reduction (MOR) has been successful in reducing the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. Symmetries an ...
Deviations from conventional hydraulic fracturing simulators’ predictions are sometimes observed in the field and laboratory. This questions the basic assumptions adopted in linear hydraulic fracture mechanics (LHFM): a linear elastic solid and a simplifie ...
We present a numerical model for the simulation of 3D poly-dispersed sediment transport in a Newtonian flow with free surfaces. The physical model is based on a mixture model for multiphase flows. The Navier-Stokes equations are coupled with the transport ...
This PhD thesis aims at developing a system which can measure the mechanical properties of fluidic samples in the picoliter range. The ultimate goal is the characterization of cancer cells and viscoelastic fluids (i.e. biological fluids), in order to study ...
In this work, we study the constitutive behavior of interacting colloidal suspensions for moderate and high concentrations. Specifically, using a lattice Boltzmann solver, we numerically examine suspensions flowing through narrow channels, and explore the ...
We use the Carreau rheological model which properly accounts for the shear-thinning behaviour between the low and high shear rate Newtonian limits to investigate the problem of a semi-infinite hydraulic fracture propagating at a constant velocity in an imp ...
The realization of artificial microscopic swimmers able to propel in viscous fluids is an emergent research field of fundamental interest and vast technological applications. For certain functionalities, the efficiency of the microswimmer in converting the ...
This paper presents a new strategy to control the structure dynamic response via a shift of the natural frequencies obtained through using variable stiffness joints. The joints are made of shape memory polymers and are fabricated through 3D printing. Stiff ...
The deformation of microfluidic channels in a soft elastic medium has a central role in the operation of lab-on-a-chip devices, fluidic soft robots, liquid metal (LM) electronics, and other emerging soft-matter technologies. Understanding the influence of ...